

SOLID WASTE MANAGEMENT IN INDONESIA

OPPORTUNITIES AND CHALLENGES FOR RECYCLING AND WASTE REDUCTION

Jakarta, Indonesia

October 25, 2018

STRUCTURE OF PRESENTATION

1. Integrated Solid Waste Management in Indonesia

2. Potential for recycling and waste-to-energy

3. Marine Debris Management

1

NATIONAL PROGRAM FOR IMPROVING SOLID WASTE MANAGEMENT

Addressing Underlying Sector Issues

October 2018

Section 1:

Current Status of Solid Waste Management Sector

Government targets demand high sector performance

Waste Management Act (No. 18/2008)

- Requires the closure of all open dumping by 2013.
- Requires all three levels of government to contribute to financing the sector.
- **Regional Development Act (No. 23/2014)**
 - Responsibility of local government in solid waste management (SWM).
- National Medium Term Development Plan (RPJMN 2015 2019)
- Targets: 100% SWM urban services (collection, treatment or disposal) by 2019. National Waste Management Policy and Strategy– Perpres No. 97/2017
 - 30% waste reduction and 70% handling by 2025 \rightarrow Prov/City/District Jakstrada
- Marine Debris Handling Presidential Regulation (Perpres) No 83/2018
 - Commitment of Indonesia for reduction of 70% marine plastic by 2025
- Acceleration of Development WtE Facilities Perpres No 35/2018
 - Covering 12 cities, feed-in tariff of US\$ 13.35 cent/KWh for power plant < 20 MW, and up to IDR 500k/ton-waste tipping fee contribution from APBN (central).

4

Conclusion: – IN SHORT AMOUNT OF TIME

Indonesia aims for 100% urban collection, 100% sanitary disposal for large urban areas, & international best practice rates of waste reduction (30%).

Despite total waste generation rapidly increasing from wealth(\uparrow) and urbanization(\uparrow)

Current performance does not come close to targets

100% Sanitary Disposal (Large Urban Areas) & Controlled Dumping (Small and **Medium Urban Areas**)

0% 30% Remainder of ~40 million tons of waste targeted for reduction (25%) Waste Reduced ~1.9 million tons of waste recycled or reused (~5%)

SWM performance is poor in all types of cities

Percentage (%)

Not one size fits all: performance varies significantly between cities & urban districts.

Identifying the key sector challenges

Analysis for National Sector Development Program

Methodology for identifying committed cities and scope of intervention

City and District Assessment (World Bank 2017) and GOI WtE Priority Cities

Tier 1 Cities + Districts			
Metropolitan Cities	Medium Cities / Districts		
Makassar*	Banjar Baru		
DKI Jakarta*	Bitung		
Palembang*	Bukit Tinggi		
Surabaya*	Karimun District		
Tangerang*	Kendari		
Big Cities	Malang District		
Balikpapan	Magelang		
Malang	Pare Pare		
Padang	Pematang Siantar		
	Probolinggo		
	Salatiga	Sukabumi	

Tier 2 Cities + Districts			
Metropolitan Cities	Medium Cities / Districts		
Bandung*	Ambon City	Mojokerto City	
Depok	Banda Aceh City	Pasuruan City	
Medan	Banyumas District	Payakumbuh City	
Semarang*	Banyuwangi District	Tangerang District	
Big Cities	Bau-Bau City	Tanjung Pinang District	
Banjarmasin	Blitar City	Tebing Tinggi City	
Denpasar*	Cianjur District		
Jambi	Jepara District		
Manado*	Kudus District		
Pekanbaru	Lahat District		
Surakarta*	Madiun City		

*. Cities covered by Perpres 35/2018 on WtE. Other are Tangerang Selatan and Bekasi

Investment Financing Gaps are Apparent

 In 2016, it was estimated that US\$1.2 billion is available for investments (25% of need), which is large enough to deliver improved sector performance measurable at a national scale when funds are spent effectively and efficiently.

Investment Scenarios – Current System

Investment Scenario – Full collection, adequate disposal, 30% Waste Reduction

CONDITIONS IN INDONESIA FOR ADVANCING WASTE RECYCLING

Approx. 3,000,000 people engaged in waste recycling, including informal collection (waste picking, collection and processing, trade).

Informal collection of recyclables in Java estimated at about 10%, less on other islands due to transport costs and lack of local capacity for trade and treatment.

Formal recycling around 2% from waste banks (segregated collection) and around 8% from sorting of mixed waste (self-reported, including composting)

Poor data on waste volumes, some data such as up to 4,000,000 ton/a of plastic recycling and low percentages of valuable recyclables in disposed waste suggest overall recycling around 20% and thus quite effective \rightarrow further improvements will need effort (and funding)

High end recycling (business to business) at IDR 700,000/ton.

Source: Practical Guidelines of Solid Waste Management, MoE, 2008

WHEN DOES WTE MAKE SENSE?

Land availability and transport infrastructure constrained

Large land sites are not available near urban centers, land is expensive, or difficulties siting WtE significantly extend landfill life

WtE facilities can be put in city centers, lowering waste transport costs

Electricity and/or and tipping fees are high

Attractive electricity tariffs (e.g. renewable FIT), especially if no or low tipping fees

Where displacing high cost import fossil fuels (e.g. diesel, LNG)

Proximity to electricity demand, co-locate with end user(s) for co-gen

Favorable policies-viewed as contributor to meeting future elect. capacity need

Favorable and consistent waste quality

Scale generally important, 1,000 tons per day MSW facility can support 16-40MW power generation

Lower moisture content, higher calorific content, lower inerts (ash, construction debris)

However, new technologies available to upgrade pr burn low quality waste

Rapidly growing large urban cities – Have many of above attributes

Megacities or large cities in middle income countries (MICs)

Effective SW management favorably impacts other urban – flooding, tourism, property values

Part of a integrated SW management plan including recycling, re-use, and waste reduction world BANK GROUP

CONDITIONS IN INDONESIA FOR WASTE-TO-ENERGY (INCINERATION)

Land availability, waste transport distances / transfer time and siting issues cause problems with landfill extension in majority of cities

Tipping fees on average too low, but proposed feed-In-tariffs up to 133.5 \$/MWh and topping up gate fees to IDR 500k/ton for earmarked cities can tip the balance in favor of WtE (DKI Jakarta Province, The City of Tangerang, Bandung, Semarang, Surakarta, Surabaya, Makassar, Bekasi, Manado, Tangerang Selatan, Palembang and Dempassar)

High organics/water content of waste is less attractive

Limited capacity to creative required business conditions and guide transactions for WtE arrangements with private sector funding

Sufficient interest from private technology providers and private financing

WASTE RECYCLING AND WTE ELSEWHERE

WORLD BAN Scherveled/composted

19

% Landfilled

20

WtE below 3R in hierarchy, ... but processes mixed waste

WORLD BANK GROUP

Marine Debris Management in Indonesia

Issues relating to oceans and marine debris management are high on Gol's agenda.

Recognizing the scale of multiple challenges, Indonesia is developing a National Oceans Agenda, anchored in a National Oceans Strategy (currently under preparation)

In June 2017, Indonesia launched the National Action Plan on Marine Debris, which calls for efforts to control plastic waste leakage/marine debris and raise awareness of the issue. It notes that improving municipal solid waste in coastal areas could reduce plastics leakage to the ocean by as much as 80%, and prioritizes efforts to collect and safely dispose of solid waste, including through a National Solid Waste Management (NSWM) Program

LAND-BASED LEAKAGE OF PLASTICS INTO INDONESIA'S MARINE ENVROYMENTS

17 MT/YR uncollected waste

Marine Litter Management in Indonesia

WORLD BANK GROUP

Percentage of households who dump in marine environment as primary waste disposal method, 2012¹

23

Marine Litter Management in Indonesia

15 coastal cities in Indonesia Baseline conditions in tidal and non-tidal areas; systems and institutional arrangements (water basin and waste management); waste characteristics; hotspots mapping: social behavior.

15 target cities: Bali (Denpasar), Java (Jakarta, Semarang, Surabaya, Yogyakarta), Kalimantan (Balikpapan, Pontianak), Sulawesi (Bitung, Makassar, Manado), Lombok (Mataram), Sumatra (Lampung, Batam, Medan, Padang)

Marine Litter Management in Indonesia – after the waste ends up in waterways

Trash Rack

Bamboo Trash Trap

Trash Rack

Marine Litter Management in Indonesia - Findings

- Wide ranging approaches and effectiveness of waste removal from waterways
- 2. Waste removed over 30% plastics (16% plastic bags), first results confirm indicative estimates of marine litter quantities
- 3. Relatively poor waste services in tidal areas
- 4. Low awareness of problems with waste to waterways
- 5. Link marine litter management (reduction of waste to waterways) with solid waste and water basin management programs

Marine Litter Management in Indonesia – Linkage to Waste Management Services and Planning

- Adequate waste collection and treatment/disposal can solve 80% of current waste leakage to waterways
- Scope for prioritizing reduction of waste to waterways in waste sector programs (focus on coastal areas, public education, relocation of infrastructure)
- 3. Solid waste sector programs tend to focus on urban areas, thus poorly address waste collection in tidal areas and river communities
- Special policies for reduction of packaging materials, particularly plastic bags, sachets (EPR)
- 5. Further research into waste removal from waterways

Reducing Ocean Plastics Pollution in Indonesia

Four-Pronged Approach

- 1. Reduce land-based leakage of plastics
- 2. Reduce sea-based leakage of plastics and other pollutants
- 3. Reduce accumulated coastal and marine pollution
- 4. Reduce plastics production and use

